

ZETA-POTENTIAL AND PARTICLE SIZE OF FUNCTIONAL ADDITIVES BASED ON GOAT MILK PROTEINS AND Agaricus blazei Murill EXTRACTS

Dušanka A. Popović Minić¹, Danijel D. Milinčić¹, Vladislav Rac¹, Bojana Vidović², Marina Soković³, Jovana Petrović³, Mirjana B. Pešić¹

¹University of Belgrade - Faculty of Agriculture, Department of Food Technology and Biochemistry, Nemanjina 6, 11080, Belgrade, Serbia ² University of Belgrade – Faculty of Pharmacy, Department of Bromatology, Vojvode Stepe 450, 11221, Belgrade, Serbia ³University of Belgrade - Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, Bulevar Despota Stefana 142, 11000, Belgrade, Serbia

TCN

TRM,

Or

VA

RM,

CN

1.INTRODUCTION

In recent years, manufacturing of functional food has gained a lot of attention. The most recent studies indicate that bovine milk proteins are suitable carriers for a whole range of bioactive substances, mainly because of their micellar structure. The results presented here are the first attempt to achieve interaction between thermally treated/untreated goat milk proteins and mushroom extracts for the development of functional additives.

2.AIM & METHODS

The aim of our study was to examine the possibility of goat milk proteins (RM - raw skimmed milk and CN - casein fraction) to deliver A. blazei extracts (VA - water extract and GA - glucan extract) in order to use all the potential health benefits of this mushroom. Furthermore, the effect of thermal treatment (90°C, 10 min; TRM – thermally treated RM and TCN - thermally treated CN) on carrier properties was also evaluated. The mixture of different goat milk proteins and A. blazei extracts were prepared and zeta-potential and particle size distribution (ر were determined by a laser light-scattering particle size analyzer, using distilled water as a dispersant. GA,

3.RESULTS

Particle size of TRM mixtures increased for 13.3 to 15.7% compared to the size of TRM particles, whereas the zeta-potential of TRM/VA increased for 6.6% compared to that of TRM. TCNs did not follow this trend. The measurement of CNs particle size distribution showed the presence of significantly different sizes (coefficient of variation >30%), whereas the zeta-potential measurements were stable.

4.CONCLUSION

The best results were obtained with the **RM and TRM mixtures**. It can be concluded that changes of particle size and electric charge particle size of the micellar surface occurring in goat milk after heating have a **positive impact** on carrier properties. These results imply that the **measurements of zeta-potential** cannot be interpreted without the particle size data.

5.REFERENCES

Hu, J., Zhao, T., Li, S., Wang, Z., Wen, C., Wang, H., . . . Ji, C. (2019). Stability, microstructure, and digestibility of whey protein isolate – Tremella fuciformis polysaccharide complexes. Food Hydrocolloids, 89, 379-385. Moeller, H., Martin, D., Schrader, K., Hoffmann, W., & Lorenzen, P. C. (2017). Native casein micelles as nanocarriers for β -carotene: pH-and temperature-induced opening of the micellar structure. International Journal of Food Science & Technology, 52(5), 1122–1130.

6.ACKNOWLEDGEMENTS & OTHER

This work was supported by the Serbian Ministry of Education, Science and Technological Development, Grant No. TR31069 and Grant No. 451-03-9/2021-14/ 200116. This poster presentation will take place on the 2nd UNIFood International Conference – UNIFood2021 in Belgrade, Serbia, organized by University of Belgrade, from 24th to

Presenting author: dusanka.popovic@agrif.bg.ac.rs